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Introduction to Measure-Theoretic Probability

Let Ω be a set. We define a σ − algebra F with the following
properties:

1. Ω ∈ F .

2. A ∈ F ⇒ Ac ∈ F .

3. A1,A2, ... ∈ F ⇒ ∪∞i=1Ai ∈ F .

The pair (Ω,F) is called a measurable space.

We can define a function P : F → [0, 1] with the properties that
P(Ω) = 1 and P[∪∞i=1] =

∑∞
i=1 P[Ai ] for a collection of disjoint sets

{Ai}i∈N. We say that P is a probability measure.

So, (Ω,F ,P) is a measure space.



Introduction to Random Variables

A mapping f : Ω→ R is measurable if for every open set V ⊂ R,
f −1(V ) ∈ F where F is the σ − algebra of Ω. Let B(R) be the
σ − algebra constructed from open sets of R.
We have two spaces:(Ω,F ,P), (R,B(R)). We want to create the
measure µX on (R,B(R)).

A random variable X : Ω→ R is just a measurable mapping.
Thus, for any A ∈ B(R), we can define:

µX (A) = P[X ∈ A] = P[X−1(A)].



Introduction to Lebesgue Integration

Our objective is to now define the quantity E[g(X )] =
∫

Ω g(X )dP.
Let (Ω,F ,P) be our measure space. Let µ be the Lebesgue
measure on (Ω,F). Let f be a measurable, non-negative mapping.

For any A ∈ F :

χA(x) =

{
1 if x ∈ A

0 else

Then, µ(A) =
∫
A dµ =

∫
Ω χAdµ.

Let s(x) =
∑n

i=1 αiχAi
(x) where Ai = {x : s(x) = αi}. So, s is a

simple function.
By linearity,

∫
Ω sdµ =

∑n
i=1 αiµ(Ai ).



Introduction to Lebesgue Integration (Ctd.)

Note that by definition, f is non-negative. Thus, there exists a
sequence of increasing simple functions 0 ≤ si ≤ si+1 that
increases to f . Then,

∫
Ω fdµ = sup0≤s≤f

∫
Ω sdµ.

For a random variable X and a Borel-measurable mapping g , we
have that

∫
g(X )dµ is defined.

As a consequence of the Radon-Nikodym Theorem, we have that
the quantity dµX

dλ = fX is defined (where µX is the probability
measure of X and . This is the probability density function.

Therefore, E[g(X )] =
∫

Ω g(X )dP =
∫

Ω g(X )dµXdλ dλ.
We can evaluate the last integral as a Riemann integral.



Statements of the WLLN and the CLT

Let µ represent a probability measure.

WLLN (Weak Law of Large Numbers): Let {Xn}n∈N be an iid
sequence of random variables with the distribution µ and the
characteristic function φ = φµ such that φ′(0) exists. Then,
c = −iφ′(0) ∈ R and 1

n

∑n
k=1 Xk → c in probability.

CLT (Central Limit Theorem): Let {Xn}n∈N be an iid sequence of
random variables with 0 < Var [X1] = E[(X1 − E[X1])2] <∞.

Then,
∑n

k=1(Xk−E[X1])√
nσ2

D−→ χ, with χ ∼ N(0, 1), σ2 = Var [X1].

But what do these theorems say?



Independence and Sequences of Random Variables

Let {Xn} be a sequence of random variables (let X be a random
variable). Each r.v. Xn (n ∈ N) has distribution (probability
measure) µXn .
We say that random variables X ,Y are independent if

P[{X ∈ A} ∩ {Y ∈ B}] = P[X ∈ A]P[Y ∈ B] for all A,B ∈ B(R).

Hence, the term ”iid” for a sequence of random variables indicates
that the random variables are independent and have common
distribution µX .



Convergence of Random Variables

Let {Xn} and X be as before. Let {µn}, µ be probability measures
(former is a sequence). We have several different modes of
convergence (let ε > 0):

1. Almost Surely (a.s.):
Xn → X a.s. ⇐⇒ P[{ω : Xn(ω) 6→ X (ω)}] = 0.

2. In Probability:

Xn
P−→ X ⇐⇒ P[{ω : |Xn(ω)− X (ω)| > ε}]→ 0 as n→∞.

3. Weak: µn
w−→ µ ⇐⇒

∫
fdµn →

∫
fdµ for f ∈ Cb(S).

4. In Distribution: Xn
D−→ X ⇐⇒ µXn

w−→ µX .



Introduction to Characteristic Functions

Given a probability measure µ (on B(R)), let ϕµ : R→ C be given
as ϕµ(t) =

∫
e itxµ(dx). This is the characteristic function of the

probability measure µ.

Given a random variable X , the characteristic function is
ϕX (t) = E[e itX ]. Note that for independent variables X ,Y , we
have ϕX+Y (t) = ϕX (t)ϕY (t). Also, given
α ∈ R, ϕαX (t) = ϕX (αt).

Note that given probability measures µ1, µ2 ϕµ1 = ϕµ2 ⇒ µ1 = µ2.
This implies that we can characterize random variables with their
characteristic functions.



Proving the WLLN

Below is a sketch of the WLLN proof:

1. Show that φ′(0) ∈ C (which implies that c = −iφ′(0) ∈ R).

2. Let Sn =
∑n

k=1 Xk . To show that 1
nSn

P−→ c , it suffices to

show that 1
nSn

D−→ c . With characteristic functions, it further

suffices to show that ϕ 1
n
Sn
→ e itc = etϕ

′(0) ∀t ∈ R.

3. Since {Xn} are iid, ϕ 1
n
Sn

(t) = (ϕ( t
n ))n = (1 + zn

n )n with

zn = n(φ( t
n )− 1).

4. Show that zn → tϕ′(0) and hence (1 + zn
n )n → etϕ

′(0).



Proving the CLT

Below is a sketch of the CLT proof:

1. Consider the sequence {(Xn − µ)/
√
σ2} with µ = 1, σ2 = 1.

2. Let Sn =
∑n

k=1 Xk so since the Xn are iid, it follows that
ϕ 1√

n
Sn

(t) = (ϕ( t√
n

))n. Then it suffices to show that

(ϕ( t√
n

))n −−−→
n→∞

e−
1
2
t2

(t ∈ R).

3. Show that |(ϕ( t√
n

))n − (1− t2

2n )n| ≤ t2r(t/
√
n) where

r(t) = E[X 2min(t|X |, 1)] for n ≥ 2
t2 (t ≥ 0).

4. Show that limn→∞ r(t/
√
n) = 0. This proves the theorem.



Appendix: Radon-Nikodym Theorem

When discussing Lebesgue integration, the function dµX
dλ = fX was

mentioned. We briefly discuss the Radon-Nikodym theorem as a
way to justify the existence of this function.

Let µ and ν be measures defined on a measure space (S ,S). We
say that µ is σ−finite if ∃ a collection of disjoint sets {Xn} ⊆ S
with ∪n∈NXn = S such that µ(Xn) <∞ for every n.

We say that ν is absolutely continuous with respect to µ (denoted
as ν � µ) if for any A ∈ S, µ(A) = 0⇒ ν(A) = 0.



Appendix: Radon-Nikodym Theorem (Ctd.)

The Radon-Nikodym Theorem is as follows: let µ and ν be
σ−finite measures on (S ,S) with ν � µ. Then, ∃f ∈ L0

+ such
that for any A ∈ S, ν(A) =

∫
A fdµ (where L0

+ is the set of
continuous, non-negative functions). If ∃g ∈ L0

+, then f = g a.e.

For such a function f , we can write f = dν
dµ . We call this quantity

the Radon − Nikodym derivative.

Let µX and λ be defined as before. Then, both measures are
σ−finite. In addition, µX � λ. Then, the Radon-Nikodym
theorem applies and the quantity fX = dµX

dλ is defined.


