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Introduction to Measure-Theoretic Probability

Let Q be a set. We define a o — algebra F with the following
properties:

1. Qe F.
2. Aec F= A e F.
3. A, Ay, ... E]'-:>U?21A,'€f.

The pair (€2, F) is called a measurable space.

We can define a function P : F — [0, 1] with the properties that
P(Q) =1 and P[U2,] = 372, P[Aj] for a collection of disjoint sets
{A;}ien. We say that P is a probability measure.

So, (R, F,P) is a measure space.



Introduction to Random Variables

A mapping f : Q — R is measurable if for every open set V C R,
f=1(V) € F where F is the o — algebra of Q. Let B(R) be the
o — algebra constructed from open sets of R.

We have two spaces:($, F,P), (R, B(R)). We want to create the
measure ux on (R, B(R)).

A random variable X : Q — R is just a measurable mapping.
Thus, for any A € B(R), we can define:

px(A) = P[X € Al = PIX"'(A)].



Introduction to Lebesgue Integration

Our objective is to now define the quantity E[g(X)] = [, g(X)dP.
Let (Q, F,P) be our measure space. Let p be the Lebesgue
measure on (2, F). Let f be a measurable, non-negative mapping.

For any A € F:

1 ifxc A
XA(x) =
0 else

Then, u(A) = [,du = [q xadpu.

Let s(x) = > i aixa,(x) where A; = {x : s(x) = a;}. So, s is a
simple function.
By linearity, [, sdpu = Y7 aip(A)).



Introduction to Lebesgue Integration (Ctd.)

Note that by definition, f is non-negative. Thus, there exists a
sequence of increasing simple functions 0 < s; < s;;; that
increases to f. Then, [q, fdu = supo<s<f [q sdp.

For a random variable X and a Borel-measurable mapping g, we
have that [ g(X)du is defined.

As a consequence of the Radon-Nikodym Theorem, we have that
the quantity d“)f = fx is defined (where px is the probability
measure of X and . This is the probability density function.

Therefore, E[g(X)] = [qg(X)dP = [, g(X) %X dX,
We can evaluate the last |ntegra| as a Riemann integral.



Statements of the WLLN and the CLT

Let 1 represent a probability measure.

WLLN (Weak Law of Large Numbers): Let {X,},en be an iid
sequence of random variables with the distribution g and the
characteristic function ¢ = ¢,, such that ¢/(0) exists. Then,
c=—i¢/(0) € Rand 23"}, Xk — c in probability.

CLT (Central Limit Theorem): Let {X,},en be an iid sequence of
random variables with 0 < Var[Xi] = E[(X; — E[X1])?] < cc.

Then, ka0 B9D By with  ~ N(0,1), 02 = Var[xi].

But what do these theorems say?



Independence and Sequences of Random Variables

Let {X,} be a sequence of random variables (let X be a random
variable). Each r.v. X, (n € N) has distribution (probability
measure) [x, .

We say that random variables X, Y are independent if

P[{X € A} n{Y e B}] = P[X € A[P[Y € B] for all A, B € B(R).

Hence, the term "iid" for a sequence of random variables indicates
that the random variables are independent and have common
distribution 1 x.



Convergence of Random Variables

Let {X,} and X be as before. Let {u,}, 1 be probability measures
(former is a sequence). We have several different modes of
convergence (let € > 0):

1. Almost Surely (a.s.):

Xp— X as. <= P[{w: Xp(w) A X(w)}] =0.
2. In Probability:

Xy 5 X = Pl{w: |Xn(w) — X(w)| > €}] = 0 as n — oc.
3. Weak: py ~ p <= [ fdu, — [ fdp for f € Cp(S).

4. In Distribution: X, DX = X, & ux.



Introduction to Characteristic Functions

Given a probability measure 11 (on B(R)), let ¢, : R — C be given
as ¢, (t) = [ e™pu(dx). This is the characteristic function of the
probability measure p.

Given a random variable X, the characteristic function is
ox(t) = E[e™X]. Note that for independent variables X, Y, we
have px1y(t) = px(t)py(t). Also, given

a € R, pax(t) = px(at).

Note that given probability measures i1, o ©u, = @u, = p1 = po.
This implies that we can characterize random variables with their
characteristic functions.



Proving the WLLN

Below is a sketch of the WLLN proof:
1. Show that ¢'(0) € C (which implies that ¢ = —i¢/(0) € R).
2. Let Sy =Y }_; Xk. To show that %5,, L ¢, it suffices to

D . . ) .
show that %5,, — ¢. With characteristic functions, it further
suffices to show that 15 — € = et (0 vt e R.

3. Since {X,} are iid, 15 (1) = (0(£))" = (1 + 2)" with
Zn = n(CZ)(%) — 1)
4. Show that z, — t¢'(0) and hence (1 + Zyn ot¥'(0)



Proving the CLT

Below is a sketch of the CLT proof:
1. Consider the sequence {(X, — u)/Vo2} with p =1, 02 =1.
2. Let S, =Y )_; Xk so since the X, are iid, it follows that
@ﬁsn(t) = (go(ﬁ))" Then it suffices to show that

(p(5)" —— 2" (teR).

3. Show that |(¢ (i))” -1 Zt— | < t2r(t/+/n) where
r(t) = E[X2m/n(t]X] 1)] for n > 5 (t > 0).
4. Show that lim,_,o r(t/y/n) = 0. This proves the theorem.
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Appendix: Radon-Nikodym Theorem

When discussing Lebesgue integration, the function dcj‘—)f( = fx was
mentioned. We briefly discuss the Radon-Nikodym theorem as a
way to justify the existence of this function.

Let & and v be measures defined on a measure space (S,S). We
say that p is o—finite if 3 a collection of disjoint sets {X,} C S
with UpenX, = S such that u(X,) < oo for every n.

We say that v is absolutely continuous with respect to u (denoted
as v < ) if forany Ae S, p(A) =0=rv(A)=0.



Appendix: Radon-Nikodym Theorem (Ctd.)

The Radon-Nikodym Theorem is as follows: let 1 and v be
o—finite measures on (S,S) with v < p. Then, 3f € £ such
that for any A € S, v(A) = [, fdu (where £ is the set of
continuous, non-negative functions). If 3g € £, then f = g a.e.

For such a function f, we can write f = d—;. We call this quantity

the Radon — Nikodym derivative.

Let pux and A be defined as before. Then, both measures are

o—finite. In addition, ux < A. Then, the Radon-Nikodym

theorem applies and the quantity fx = dj—)f is defined.



